This article was downloaded by: On: 23 January 2011 Access details: Access Details: Free Access Publisher Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Journal of Coordination Chemistry

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713455674

CHIRAL METAL COMPLEXES. 46^{*}. THE STRUCTURE OF {6*S*,14*S*-(4*R*,12*R*-DIMETHYL)-1,5,9,13-TETRAAZATRICYCLO-[12,2,1,1^{6,9}]OCTADECANE}PERCHLORATO-COPPER(II) PERCHLORATE

Robert J. Lancashire^a; Paul D. Newman^b; Frederick S. Stephens^c; Robert S. Vagg^c; Peter A. Williams^d ^a Department of Chemistry, University of the West Indies, Mona, Kingston, Jamaica ^b School of Chemistry and Applied Chemistry, University of Wales, College of Cardiff, Wales, U.K. ^c School of Chemistry, Macquarie University, NSW, Australia ^d Department of Chemistry, University of Western Sydney, Kingswood, NSW, Australia

To cite this Article Lancashire, Robert J., Newman, Paul D., Stephens, Frederick S., Vagg, Robert S. and Williams, Peter A.(1995) 'CHIRAL METAL COMPLEXES. 46*. THE STRUCTURE OF {6*S*,14*S*-(4*R*,12*R*-DIMETHYL)-1,5,9,13-TETRAAZATRICYCLO-[12,2,1,1^{6,9}]OCTADECANE}PERCHLORATO-COPPER(II) PERCHLORATE', Journal of Coordination Chemistry, 34: 4, 345 – 350

To link to this Article: DOI: 10.1080/00958979508024322 URL: http://dx.doi.org/10.1080/00958979508024322

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

J. Coord. Chem., 1995, Vol 34, pp. 345–350 Reprints available directly from the publisher Photocopying permitted by license only © 1995 OPA (Overseas Publishers Association) Amsterdam B.V. Published under license by Gordon and Breach Science Publishers SA Printed in Malaysia

NOTE

CHIRAL METAL COMPLEXES. 46*. THE STRUCTURE OF {6*S*,14*S*-(4*R*,12*R*-DIMETHYL)-1,5,9,13-TETRAAZATRICYCLO-[12,2,1,1^{6,9}]OCTADECANE}PERCHLORATO-COPPER(II) PERCHLORATE

ROBERT J. LANCASHIRE

Department of Chemistry, University of the West Indies, Mona, Kingston, Jamaica

PAUL D. NEWMAN

School of Chemistry and Applied Chemistry, University of Wales, College of Cardiff, P.O. Box 912, Cardiff CF1 3TB, Wales, U.K.

FREDERICK S. STEPHENS, ROBERT S. VAGG**

School of Chemistry, Macquarie University, NSW 2109, Australia

and PETER A. WILLIAMS**

Department of Chemistry, University of Western Sydney, Nepean, P.O. Box 10, Kingswood, NSW 2747, Australia

(Received August 30, 1994)

The crystal and molecular structure of {6*S*, 14*S*-(4*R*, 12*R*-dimethy1)-1,5,9,13-tetra azatricyclo[12,2,1,1^{6,9}]-octade cane} perchlorato copper(II) perchlorate, [Cu(*S*-mac5)C1O₄]C1O₄ has been determined by X-ray analysis. Crystal data: $C_{16}H_{32}N_4O_8C1_8C1_2Cu$ is monoclinic, space group $P_{1,}a = 11.340(3)$, b = 13.713(2), c = 15.002(1) Å, $\beta = 97.13(1)^{\circ}$, Z = 4. The structure was refined by full-matrix least-squares procedures to R = 0.056 for 3494 non-zero ($I > 2\sigma(I)$) reflections and with $\eta = 1.03(11)$ confirming the configurations at the chiral centres. The two independent cations are structurally equivalent with the N₄ macrocycle coordinating to the copper atom in a square-planar arrangement with Cu-N_{sec} of 1.988(6) and Cu-N_{tert} of 2.019(5) Å, and a square-based pyramidal geometry is completed by an oxygen atom of a perchlorate ion, Cu-O 2.63(1) Å. Folding of the non-chelate five-membered rings produces a conformation such that one face of the complex ion is more available for axial coordination of unidentate ligands.

KEYWORDS: X-ray analysis, Cu(II) complex, chiral macrocycle

Downloaded At: 16:48 23 January 2011

^{*}Part 45 is reference 2.

^{}**Authors for correspondence.

INTRODUCTION

In pursuance of our studies on the stereochemical features of $Me_2[14]ane-N_4$ ligands^{1,2} we report here the crystal structure of $\{6S, 14S-(4R12R-dimethy1)-1,5,9,13-tetraazatricyclo-[12,2,1,1^{6,9}]-octadecane}$ perchloratocopper(II) perchlorate, [Cu(S-mac5)ClO₄ClO₄, which has ethy1 'straps' appended in the 6,8- and 13,1-positions of the [14]ane-N₄ macrocycle.

EXPERIMENTAL

The complex was synthesised by a previously reported method.¹

Crystal Data

 $C_{16}H_{32}N_4O_8C1_2Cu; M_r = 542.90;$ monoclinic; a = 11.340(3), b = 13.713(2), c = 15.002(1) Å, $\beta = 97.13(1)^\circ$; U = 2314.8 Å³; $Z = 4; D_c = 1.558$ g cm⁻³; $F(000) = 1132; \mu(Mo-\alpha) = 12.61$ cm⁻¹; space group $P + + + + + + 2_1$ (No. 4).

Data for the complex were collected at 298 K on an Enraf-Nonius FAST area detector diffractometer using documented procedures.³ Unit cell parameters were determined from reflections in the range 1.5 $<\theta < 25.0^{\circ}$ via the REFINE procedure of MADNES software.⁴ Intensities for 12203 reflections in the range 2.4 $<\theta < 30.0^{\circ}$ with indices h-14 to 14, k-11 to 19, l-20 to 19 were measured. These generate a unique data set of 7088 reflections of which 3494 have $I < 2\sigma(I)$ ($R_{int} = 0.016$) and these were used for the structure determination. The structure was solved by the heavy-atom method and refined by full-matrix least-squares methods. Difference maps indicated disorder in one of the non-coordinated perchlorate ions; the occupancies of the oxygen atoms were assigned such that the atoms had approximately the same isotropic thermal parameters. In these and subsequent maps there was no evidence for the methyl hydrogen atoms and hence the positions for the other hydrogen atoms were calculated assuming C,N-H to be 1.0 Å and the appropriate geometry of the atom to which they are bonded. Final refinement was carried out with anisotropic thermal paramters for all non-hydrogen atoms of the macrocylic ligand, the copper and chlorine atoms and oxygen atoms O(1a) and O(2a). The weight for each reflection was unity. Refinement was terminated when the shift in any parameter was $<0.1\sigma$. The final values for R and $R'_{\{=(\Sigma w (F_o - F_c)^2 / \Sigma w F_o^2)^{1/2}\}}$ were 0.056 and 0.074, respectively, and with $\eta = 1.03(11)$ confirming the configurations of the chiral centres. A final difference map showed no unusual features with density maxima < |0.7| e Å⁻³.

Calculations were carried out on a FACOM M350S computer using programs written by F.S.S. Neutral atom scattering factors, corrected for anomalous dispersion were taken from International Tables for X-ray Crystallography⁵.

DISCUSSION

The two independent complex cations are structurally similar and stereo-views⁶ of them together with the atom labelling scheme are shown in Figure 1. Final atomic

Figure 1 Stereo-views of the two independent complex cations showing the atom labelling.

coordinates for the non-hydrogen atoms and a list of selected bond lengths and angles are given in Tables 1 and 2, respectively.

In each cation the copper atom is five-coordinate with a distorted squarebased pyramidal geometry. This distortion is manifest in a tetrahedral twist of ca. 22° in the N₄ plane; the copper atom lies 0.092 Å towards the apex with deviations of 0.24 and -0.24 Å for N_{tert} and N_{sec}, respectively. This means, with respect to the square-based pyramid, that the N_{tert}-Cu-N_{tert} angle is 188.8(4)°. The Cu-N_{sec} and Cu-N_{tert} distances of 1.988(6) and 2.019(5)Å, respectively, are significantly shorter than corresponding distances found in structural analogues.^{1,2} The apical positions are occupied by oxygen atoms of perchlorate ions with Cu-O lengths of 2.63(1) Å, which are considerably longer than both that of 2.44 Å found in the related eicosane structure, [Cu(Smac7)C1O₄]⁺,¹ and of 2.508 Å reported by Orpen *et al.*⁷

As with the previously reported structures, $[Cu(S-mac7)C1O_4]^{+1}$ and $[Cu(S-mac6)C1]^{+}$,² the conformations of the five-membered chelate rings are δ and the six-membered chelate rings adopt chair conformations. The other two

	Occ#	x/a	y/b	z/c	B*
Cul		233.3(11)	2500	2425.8(8)	2.7
N111		767(9)	1610(9)	1512(7)	3.2
N112		-1400(8)	2309(9)	1738(6)	3.3
N121		-328(10)	3204(10)	3453(7)	3.4
N122		1839(9)	3098(9)	2841(7)	3.2
C111		-247(14)	954(12)	1309(10)	4.0
C112		-1190(12)	1705(12)	963(9)	3.8
C113		-565(13)	2304(14)	322(8)	4.9
C114		767(13)	2189(12)	658(8)	4.4
C115		1938(13)	1092(10)	1815(9)	3.5
C116		2950(12)	1800(13)	2156(9)	3.8
C117		2821(12)	2362(13)	3009(8)	3.9
C118		4030(12)	2833(12)	3353(10)	4.4
C121		757(12)	3169(14)	4124(9)	4.0
C122		1584(13)	3724(13)	3623(10)	4.2
C123		844(16)	4630(12)	3238(12)	4.9
C124		-463(16)	4246(13)	3201(11)	4.7
C125		-1384(11)	2769(13)	3811(8)	4.4
C126		-2435(11)	2667(14)	3071(9)	4.2
C127		-2315(13)	1931(15)	2331(10)	4.7
C128		-3562(13)	1804(17)	1722(13)	6.3
Cu2		4362.0(11)	2506.6(19)	7497.2(8)	2.8
N211		3408(10)	1824(10)	6477(7)	3.6
N212		5777(10)	1941(10)	7002(8)	3.9
N221		5288(10)	3361(9)	8395(7)	3.2
N222		3017(9)	2690(9)	8252(6)	3.2
C211		4225(16)	1836(14)	5775(9)	5.2
C212		5272(15)	1330(14)	6253(11)	5.1
C213		4608(17)	439(14)	6610(14)	5.8
C214		3385(14)	766(11)	6687(11)	4.0
C215		2236(14)	2274(14)	6199(9)	5.4
C216		1462(12)	2399(17)	6979(10)	4.6
C217		1894(12)	3102(13)	7728(11)	4.2
C218		853(15)	3207(16)	8323(12)	6.4
C221		4363(14)	4037(12)	8657(9)	3.9
C222		3586(13)	3298(12)	9019(9)	4.2
0223		4450(14)	2/14(13)	9030(8)	4.5
C224		5050(13)	2775(11)	9221(9)	4.2
C225		0310(13)	3883(11)	8043(10)	4.0
C220		(1/(13))	3198(14)	/00/(11)	4.5
C227		0034(13)	2/14(13)	0/09(10)	4.8
C228		7723(17) 504(4)	2245(15)	0301(10)	8.5
		394(4) 386(15)	222(4)	4082(3)	4.8
Olb		280(15)	921(11)	3408(8)	10.0(5)
		132(10)	202(10) 720(20)	4893(13)	10.9(5)
014		1824(27)	-729(20)	4208(20)	13.3(7) 18 $4(0)$
C12		4034(4)	4887(4)	5941(2)	10.4(7)
022		3987(14)	4125(13)	6549(9)	70
O2b	0.9	4866(21)	5548(20)	6215(16)	12 5(7)
02c	0.9	3450(23)	4741(21)	5122(16)	12.5(7)
Õ2d	0.8	4498(26)	4479(24)	5170(19)	13.1(8)
O2e	0.4	3517(51)	5757(53)	6198(40)	13.5(17)
C13		7279(4)	17(4)	8975(2)	5.2
O3a		7471(16)	769(17)	8392(13)	11.0(5)

Table 1 Final Atomic Coordinates (fractional 10^4) for Non-Hydrogen Atoms with Estimated Standard Deviations in Parentheses.

	x/a	y/b	z/c	B*
O3b	6930(17)	-758(17)	8525(14)	11.5(5)
O3c	6648(16)	385(16)	9663(13)	10.4(5)
O3d	8381(23)	-300(23)	9429(18)	16.1(8)
C14	2445(5)	-18(4)	9262(3)	6.0
O4a	1929(13)	757(15)	8747(11)	8.9(4)
O4b	2724(16)	-822(16)	8751(12)	10.3(5)
O4c	1682(18)	-407(19)	9845(15)	12.1(6)
O4d	3259(15)	291(15)	9962(12)	10.2(5)

Fable 🛛	1 Coi	ntinued
---------	--------------	---------

#Only partial occupancies are indicated. $*B_{eq}$ or B_{iso} with estimated standard deviations in parentheses.

five-membered rings, formed by the ethyl 'straps', are again folded to the same side of the N_4 plane. However, unlike the related structures containing six-² and seven-membered¹ rings in which only one face of the complex is available for axial coordination, folding and other steric effects in the present macrocycle make both faces less accessible, although with an obvious preference for one. A detailed discussion of the steric features of these macrocylic ligands will be reported elsewhere.

In the crystal, weak hydrogen bonds between the NH groups and perchlorate oxygen atoms are evident and the details of these, together with the closest non-bonded contacts are given in Table 3.

= 2	
84(11)	
25(10)	
9(2)	
9(2)	
1(2)	
2(2)	
0(2)	
9(2)	
9(2)	
5(2)	
2(2)	
5(2)	
6(2)	
= 2	
171.4(5)	
161.4(5)	
96.5(4)	
95.7(5)	
.3(4)	
.6(5)	
.6(5)	

Table 2 Selected Bond Lengths and Angles with Estimated Standard Deviations in Parentheses.

a) Proposed Hydrogen Bor	iding*		
N(112)O(4b ¹)	3.01(2)	N(212)O(3a)	3.10(2)
$N(122)O(3b^{11})$	3.05(2)	N(222)O(4a)	3.06(2)
b) Intermolecular Distance	s <3.4Å*		
$C(126),O(2e^{III})$	3.15(7)	$C(212),O(2d^{IV})$	3.35(4)
$C(127)O(2e^{II})$	3.17(6)	$C(124)O(1b^{1})$	3.36(3)
C(122)O(2c)	3.21(3)	$C(113)O(4c^{I})$	3.38(3)
$C(213)O(2d^{V})$	3.25(4)	$C(123)O(1b^{I})$	3.40(3)
Those in italics involve dis	ordered perchlorate oxy	gen atoms.	()

Table 3 Contact Distances (Å) with Estimated Standard Deviations in Parentheses.

*Roman numeral superscripts refer to the following equivalent positions relative to x, y, z: I -x, 1/2 + y, 1 - zII - x, 1/2 + y, 1 - zII - x, 1/2 + y, 1 - zIV 1 - x, y - 1/2, 1 - z

SUPPLEMENTARY MATERIAL

Lists of observed and calculated structure factors, anisotropic thermal parameters, hydrogen atom coordinates and a comprehensive table of bond lengths and angles are available from the authors on request.

Acknowledgements

We thank the Australian Research Council for financial support and the S.E.R.C. for access to its X-ray data collection service.

References

- R. Edwards, P.D. Newman, F.S. Stephens, R.S. Vagg and P.A. Williams, *Inorg. Chim. Acta*, 204, 125 (1993).
- 2. R.J. Lancashire, P.D. Newman, F.S. Stephens, R.S. Vagg and P.A. Williams, J. Coord. Chem., in press.
- A.A. Danopoulos, G. Wilkinson, B. Hussain-Bates and M.B. Hursthouse, J. Chem. Soc., Dalton Trans., 1855 (1991).
- 4. MADNES VERSION 11-SEP-1989, J.W. Pflugrath and A. Messerschmidt, Distributed by Enraf-Nonius, Delft (1989).
- 5. International Tables for X-ray Crystallography, (Kynoch, Birmingham, UK, 1974), Vol. III, pp. 72-79, 149.
- R.S. Vagg, 3D-MOL, integrated microcomputer programs for molecular graphics, Macquarie University (1993).
- A.G. Orpen, L. Brammer, F.A. Allen, O. Kennard, D.G. Watson and R. Taylor, J. Chem. Soc., Dalton Trans., S49 (1989).